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ABSTRACT 
A simple shear flow of granular materials is studied to 
determine the stress and strain rate relation under high 
concentration. It is found that grain structure may form under 
slow shear rates so that a narrow shear band accommodates all 
shearing motion. Accompanying such structures is a periodic 
progression of stresses. The formation and stability of the shear 
band depends on both the shear rate and the sample size. At 
high shear rate and large sample size, stable structures give way 
to random organizations and random stress fluctuations. In a 
dense granular flow, a minimum number of particle layers are 
required to re-organize, in order to create space for the shear 
band. For sample sizes comparable to the required number of 
layers for a shear band to exist, only one shear band is possible, 
hence the integrity of this shear band persists into lower 
concentration. As the sample size increases, several shear bands 
may co-exist in the aggregate. These shear bands may merge 
into a chaotic, low concentration band, where a collisional 
granular shear flow appears. From these observations one 
naturally questions the existence of a constitutive law for such 
highly concentrated flows at low shear rates. It seems that only 
for large-scale problems, where this geometric constraint is no 
longer a factor, can one obtain true constitutive relations for 
granular flows. The observations made are based on computer 
simulations of uniform disks. For poly-dispersed systems, we 
speculate that the same phenomena exist for narrow size 
distributions and will disappear when the size distribution is 
broad. 

 
INTRODUCTION 
Numerical simulations of simple shear flows with periodic 
boundary condition have been used to establish the constitutive 
relation of a granular assembly. The effect of sample size on 
the results has been mentioned for both 2D (Babic et al., 1990; 
Shen, 2001) and 3D systems (Campbell, 2002). In a 2D 
simulation with a small sample size and high concentration, the 
discs quickly arrange themselves into a hexagonal packing in 
which shear occurs over a single rolling layer of discs. The 
average stresses are independent of the shear rate, but 
experience large periodic oscillations, with a frequency directly 
related to the shear rate. With decreasing concentration or  
increasing sample size, both the hexagonal regular packing and 
the periodic stress oscillations gradually give way to random 
packing and randomly fluctuating stresses. The average stresses 

become increasingly dependent on the shear rate. Campbell 
(2002) characterized the transition from rate-independent to 
rate-dependent regimes for dense 3D systems of various 
material properties.  

In nearly static situations, Howell et al. (1999) studied 
both 2D and 3D systems in physical experiments and found that 
for large systems stress fluctuations can exist for dense slow 
granular materials, even though the spatial disorder of grains is 
small. 

From these studies, it is clear that in dense granular 
flows, orderly motion with shearing taking place in localized 
regions is a preferred mode. Under such orderly shearing, the 
stresses progress with regularity. The first indication of the 
deterioration of such orderly motion is  random fluctuations of 
the stresses. With increasing sample size or shear rate, 
increasing stress randomness precedes the spatial disorder. To 
understand the slow dense flow of granular materials it is 
interesting to determine what controls their organization ability.  

In this work, we study the spatial organization of a 
granular assembly under shear. The effect of sample size, shear 
rate and friction coefficient are investigated. With a high 
concentration, we believe that the geometric constraint plays an 
important role. We will examine the formation of regular 
packing, the shear bands, the associated stress fluctuations, and 
the rate dependency of the average stresses on the shear rate. A 
uniform disc assembly sheared under periodic boundary 
conditions will be our model. 

Our conceptual idea is explained as follows. At high 
solid concentration granular materials can shear only if enough 
space is created in the aggregate. This space can be created by 
compressing particles or by re-organizing them. The former 
creates high stresses, the latter requires time. When the shear 
rate is low, the grains have sufficient time to re-organize to 
accommodate shear. For aggregates of uniform disks, the size 
of the groups perpendicular to the shearing direction may be 
calculated from pure geometric arguments. At fixed shear rate, 
as the solid concentration gradually decreases more random 
motions among the particles become possible. The stability of 
the tightly packed region decreases. Shearing zones begin to 
jump around the aggregate in a chaotic fashion. Eventually, at 
low enough concentration, grain order gives way to a fully 
random spatial distribution.  
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NOMENCLATURE 
ba, horizontal and vertical sample size  

B Dimensionless shear rate  
C Concentration Na Horizontal particle number  
d Particle diameter  
dt Time step  
e Restitution coefficient  
Kn Normal stiffness 
Ks Shear stiffness  
m Particle mass 
  Shear rate 
Nb Vertical layer number 
V, H Vertical and horizontal distances between layers  
µ Friction coefficient 
 

1. Analysis of periodic sliding 
 
Consider a shear flow moving in the horizontal direction with a 
gradient in the vertical direction as shown in Fig. 1. In dense 
granular flows, shear occurs in very narrow localize regions. 
The most extreme case is a shear band that consists of a single 
sliding plane with a width of a single particle diameter as in 
Fig. 1(a). This situation occurs for nearly frictionless materials. 
For sufficiently frictional materials, rolling instead of sliding 
occurs in the shear band. The smallest width of this type of 
shear band is two-particles, as in Fig. 1(b). 
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            (a) 1 layer (sliding)           (b) 2 layers (rolling) 

Fig. 1  Minimum shear bands. 
We start with a given concentration C0 and a sample size of a 
(horizontal) and b (vertical) layers. Imagine a regular packing 
as in Fig. 2(a). When the concentration is less than the 
maximum possible value, there is a small gap between 
neighboring particles. When shearing motion begins, if the 
density is high, the particles will run into each other. Under 
very slow flow, particles are able to group together to create a 
low concentration zone where shear may occur without large 
compression of particles. We are interested in finding the 
number of particles that need to group together to form this 
shear band. 
 Fig. 2(b) shows the geometric arrangement between a 
particle in the shear band, and the immediate neighbors above 
it. The re-arrangement required to create a shear band will force 
the particles to pack more tightly in the vertical direction while 
leave the horizontal distance between particles in the shear 
band the same as before the shear. Simple geometric 
manipulation yields: 63max π=C , rH 2min = , rV 3min = , 

0max0 2 CCrH = ,  and 23 00 HV = . The particle numbers in 
the sample Na an Nb are related to the sample size as 0HNa a×=  

and 0VNb b ×= , where r is the particle radius. sV  and 

sHH =0 .  

V0
 

H0
  

Vs 

Hs  
(a) at concentration C0;   (b) at concentration Cs. 

 
Fig. 2 Definition of geometrical variables in periodic-sliding 

process. 
 
(1) Minimum layer number versus concentration with non-
overlapping particles 
 

When the shear rate approaches zero, the particle system has 
enough time to re-organize. We consider the minimum shear 
band cases: Fig. 1(a, b). If particles do not overlap in the 
assembly, for a sliding shear band (as Fig. 1(a)), we have 
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For a rolling shear band (as Fig. 1(b)), we have 
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Substituting  Eq. (2) into Eq. (3), we have 
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The results are plotted in Fig. 3 versus concentration.  
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Fig. 3 Minimum layer number vs. concentration. 
 
(2) Maximum overlap versus sample size 
 
Considering the rolling shear band in Fig. (1b), based on Eq. 
(3), we have 
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for 1 sliding layer, we have 
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The maximum overlap in the regular sliding can be estimated 
as 

2
s

2

4
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The maximum overlaps in sliding under different 
particle layers are plotted in Fig. 4 for C0 = 0.90 and 0.89. The 
overlap decreases as the sample size increase. Peak stress 
during a shear cycle will also decrease and the overlap reduces. 
When the sample size is large enough, there is no overlap 
anymore. When this happens, regular sliding is no longer 
needed to facilitate the shear. The shearing motion will become 
more random and stresses will display fluctuations and rate 
dependency.  
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Fig. 4 Maximum overlap in different sample size under 
regular shear band.  
 
(3) Localized concentration versus sample size 

 
Inside the shear band the local concentration is lower than the 
mean concentration. The remaining assembly has a 
concentration Cs higher than the mean C0. For sliding shear 
band shown in Fig. 1(a), we have 
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Similarly, for the rolling shear band shown in Fig. 1(b)  
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Based on Eqs. (10) and (11), the localized concentration can be 
determined for the sliding and rolling shear bands for different 
sample sizes Nb, respectively. The results are plotted in Fig. 5. 
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Fig. 5 Local concentration vs. layer number. 
 

The results in Figs. 3 to 5 are obtained under the assumption 
that the entire sample is in a static state. When the shear rate is 
extremely slow the particle system have enough time to re-
organize into the “most favorable” conditions shown in Fig. 1. 
These conditions will not be possible if the sample size is 
smaller than the required value shown in Fig. 3.  

 
2. Dynamic properties of particle system under shear 
 
We will next study the dynamic behavior of a sheared 
assembly. The parameters used are given in Table 1 unless 
otherwise specified. We apply the usual periodic boundary 
condition. The dimensionless shear rate is defined as 

mKB /nγ= .  

Table 1. Parameters in the 2D granular flow simulation 
with periodic boundary 

Variable Definition values 
Na Horizontal particle number  20 
Nb Vertical layer number 20 
Kn Normal stiffness 1.0×106 
m Particle mass 1.0 

γ  Shear rate 0.1 

B Dimensionless shear rate 1.0×10-4 
µ Friction coefficient 0.5 
e Restitution coefficient 0.9 
Ks Shear stiffness 8.0×105 
d Particle diameter 1.0 
dt Time step Tbc/50 
C Concentration  0.90  

With the given sample size and friction, shear occurs in a 
rolling band as in Fig. 1(b). The simulated dimensionless stress 
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( )22* γρττ Dijij =  is plotted in Fig. 6. All three components of 
the stresses change periodically with time. The period is exactly 
the time required to move the regular packing above and below 
the rolling layer a distance 0H . The magnitude of maximum 

stress *
22τ  is much larger than *

11τ  because the compression 
between particles are dominant in the vertical direction.  
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Fig. 6. Simulated results with C=0.9 (sample size: 

Na×Nb=20×20). 

We introduce two more tests to compare with the base case 
shown above. In case (a) we reduce the concentration from 0.90 
to 0.89, in case (b) we reduce the sample size Na×Nb from 
20×20 to 10×12. All other parameters are the same as those 
listed in Table 1. We find that in case (a) the shear zone 
remains as a rolling layer. The simulated stresses are plotted in 
Fig.7 (a). The stress magnitude reduces to 1/4 of that when 
concentration was 0.90. At the same time, the normal stresses 
begin to lose their regular periodicity. The positive portion of 
the shear stress weakens. If we further reduce the concentration, 
the positive portion of shear stress vanishes. In case (b), the 
stress periodicity remains the same as in the original case, while 
the magnitude of stresses nearly doubles. Moreover, we also 
find that the shear band changes from rolling to sliding. From 
this observation we expect that the width of a shear band will 
increase with the sample size. 
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Fig. 7. Simulated dimensionless stresses with (a) C=0.89, 

Na×Nb=20×20 and (b) C=0.90, Na×Nb=10×12. 
 

3. Critical conditions for periodic stresses 
 
The stability of shear band appears to be related to the stress 
state. As the stresses begin to deviate from periodic, the shear 
band begins to widen. In this section we will discuss the 
transition from periodic to random stress fluctuations for 
different sample sizes, shear rates, concentrations, and friction 
coefficients. In the following, the computational parameters are 
the same as listed in Table 1, unless specified otherwise. 
 
3.1 Test on sample size Nb 
 
To test the effect of sample size, we let Nb vary from 4 to 100 
and fix Na at 20. The averaged *

22τ  and the amount of overlap 
are plotted in Fig. 8. The amount of overlap from the simulation 
under this slow shear rate is close to the analytical solution 
given in Eq. (8). The simulated stress *

22τ  has the same 
decreasing trend as the sample size increases. When we 
examined the flow using animation, we found that a stable 
shear band existed when 7<Nb<50. When Nb < 7, the granular 
assembly does not have enough space to generate periodic 
sliding, and the shear zone spreads over the whole domain. 
When Nb > 50, the shear zone occurs in several layers, and the 
stresses fluctuate wildly as shown in Fig. 9. Large stress 
fluctuations in moderately large system have also been found in 
physical experiments (Howell et al., 1999; Mueth et al., 1998).  
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Fig. 8 Overlap and stress *

22τ  versus sample size.  
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Fig. 9 Fluctuation of *

12τ  and *
22τ . 

 
3.2 Test on shear rate 
 
Results for different shear rates are given in Fig. 10 whereγ  = 
0.1, 0.5, 1.0 and 5.0. The mean dimensionless stresses show 
that when γ  < 0.5 (B < 5×10-3), the particle system undergoes 
regular shearing. With an increasing shear rate, the periodicity 
of the stress deteriorates. When γ  > 5.0, all trace of periodicity 
is lost in the stress.  
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Fig. 10 simulated stress for different shear rates. 

 
3.3 Test on concentration 
 
The averaged dimensionless stresses associated with reducing 
concentration from 0.90 to 0.80 are plotted in Fig. 11. As the 
concentration decreases, the stresses exhibit a very surprising 

minimum between C =0.88 and 0.87. In order to explain this 
odd phenomenon, an animation of the particle movement and 
the stress fluctuations was examined. From the motion of 
particles, we found regular sliding under dense condition (C ≥ 
0.87), and random motion random under the loose condition ( C 
≤ 0.86 ).  
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Fig. 11 Averaged *

ijτ  versus concentration.  
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Fig.12 Fluctuation of *

ijτ  for C=0.86 and 0.87. 
 

We study two concentrations, C = 0.86 and 0.87, one inside the 
minimum stress region and one outside of it. The graph of the 
stress in Fig. 12 shows that in both cases *

ijτ  experiences strong 
fluctuations, but the stress pulses of C = 0.87 are much 
narrower than C = 0.86. Two typical snapshots of the particle 
configuration in these two cases are given in Fig. 13. It is clear 
that the shear zone is very narrow for C = 0.87. Hence particle 
rearrangement is easy. This can also explain the narrow stress 
pulses and rapid force chain collapse. For C = 0.86, the shear 
banding is complex and the bands more numerous. Re-
organization of particles is difficult. Particles remain in long 
contact and thus stress pulses are longer, resulting in larger 
average stress too.  
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    C=0.86               C=0.87 

Fig. 13 Particle configurations in random shear flow 
(C=0.86) and regular shear flow (C=0.87). 

 
In the simulation above, the sample size is 20×20. If the sample 
size increases to 20×100, the results show that there is no clear 
transition between random and regular shearing motion (Fig. 
14). Thus, the influence of geometrical constraints becomes 
weaker as the sample size grows. We also expect such 
constraints to be less prominent in 3D due to the greater 
number of degrees of freedom.  
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Fig. 14 Averaged *

ijτ  in steady state versus concentration. 
 
3.4 Test on friction coefficient 
 
The effect of friction coefficient on the shear band behavior is 
shown in this section. When µ < 0.80, the particle system 
appears to perform regular layered-shear motion as in Fig. 1(b). 
The resulting stresses are periodic. When µ ≥ 0.80, the particles 
can be sheared in layers, but the stress frequency and amplitude 
are no longer steady. When µ ≥ 0.90, the granular system 
becomes completely random. The average stresses versus 
friction coefficient are shown in Fig. 15. In the range 

8.02.0 ≤≤ µ , the dimensionless stresses are independent of the 
friction coefficient. In this case the stresses are dominated by 
the compressive stresses created when particles overlap each 
other in the rolling shear.  From the animation, we also find that 
there is only one shear band for friction coefficients µ = 0.0 and 
0.1, while there are two shear bands when 8.02.0 ≤≤ µ . 
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Fig. 15 Averaged stress versus friction coefficient. 

  
4. Conclusions 
 
In the slow dense granular materials, the geometric constraint 
on the shear flow behavior is studied with a series of numerical 
simulations. These simulations use an assembly of uniform 
disks. The relationships among stresses, shear rate, sample size, 
and concentration are analyzed. The regular motion of packed 
material over a narrow shear band is found to be a norm when 
shear rate is low and sample size is over a critical value. It is 
found that such regular motion can be generated more easily for 
dense and slow flows, because there is enough time and strong 
constraint for particle to re-organize. This re-organization tends 
to minimize the normal stress, particle compression and the 
potential energy in the system. If the sample size is too large or 
too small, the particle motion and configuration become 
random. The transition between regular and random shear 
motion is less sharp with a large sample size. When particle 
friction increases the shear band also widens. Although this 
study is based on uniform particles, we believe that most of the 
phenomena will persist even for mildly poly-disperse systems. 
The formation of particle grouping and narrow shear band 
appears to be the only way dense granular flows can 
accommodate shear motion. The stability of the groups and 
shear bands are closely related to the stress fluctuations and the 
rate-dependence of the stresses. 
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